7 Sep 2022

65

Regression Analysis: Definition, Types, and Examples

Format: APA

Academic level: Master’s

Paper type: Coursework

Words: 477

Pages: 4

Downloads: 0

Question 1 

y = (1/200)*x 1 + (1/255)*x 2 + 10*x 3 + 5*x 4 … Equation 1 

Equation 1 can also be rewritten as: 

According to the coefficients obtained from the regression model, which is provided below, the coefficients of x would now be the following: 

 … Equation 2 

Thus, the equation needs to be updated because the coefficients of x have changed in the new equation. 

It’s time to jumpstart your paper!

Delegate your assignment to our experts and they will do the rest.

Get custom essay

Question 2 

The intercept is provided as -2.38 in this model, and represents the total time when all values of x=0. In the instance that this figure was a positive value, it would give the average time taken to produce when all factors of x (size change, label change and packing for 12oz and 24oz units) are equal to zero. But bringing this picture into this model, a positive value would still be insignificant, since when x=0, no production has been done. 

Table 1 : Q1 Regression Results 

SUMMARY OUTPUT 

       
           

Regression Statistics 

       

Multiple R 

0.965203425 

       

R Square 

0.931617652 

       

Adjusted R Square 

0.920676476 

       

Standard Error 

16.72998826 

       

Observations 

30 

       
           

ANOVA 

         
 

df 

SS 

MS 

Significance F 

Regression 

95328.98732 

23832.24683 

85.1478558 

3.45722E-14 

Residual 

25 

6997.312676 

279.8925071 

   

Total 

29 

102326.3 

     
           
 

Coefficients 

Standard Error 

t Stat 

P-value 

 

Intercept 

-2.377596872 

16.29754833 

-0.145886781 

0.885180711 

 

24oz units 

0.002241511 

0.00102527 

2.18626413 

0.038370782 

 

12oz units 

0.004702737 

0.002013478 

2.335628347 

0.027832267 

 

Size change 

14.20807705 

1.983746946 

7.16224268 

1.66017E-07 

 

Label change 

5.255946235 

1.588585996 

3.30856891 

0.002844316 

 

Case 2: Question 2 – 4 

Question 2a. 

From the data obtained, attractiveness would be expressed in this equation: 

Where y is profit, a is the coefficient of profit and x 1 is the profit amount. P value for attractiveness is 0.0023, indicating that the null hypothesis that attractiveness is of no effect to profit can be rejected. With a high regression coefficient in the model above, it is recommended that continuously good looks for the hotel locations will result in increasing profits. 

Table 2 : Q2a Regression Result 

SUMMARY OUTPUT 

         
           

Regression Statistics 

       

Multiple R 

0.385195812 

       

R Square 

0.148375814 

       

Adjusted R Square 

0.133692638 

       

Standard Error 

244.2010126 

       

Observations 

60 

       
           

ANOVA 

         
 

df 

SS 

MS 

Significance F 

Regression 

602612.3686 

602612.3686 

10.10515828 

0.002372386 

Residual 

58 

3458779.804 

59634.13455 

   

Total 

59 

4061392.172 

     
           
 

Coefficients 

Standard Error 

t Stat 

P-value 

 

Intercept 

158.637516 

91.66348334 

1.730651184 

0.08883159 

 

Attract 

108.7188644 

34.20057023 

3.178861161 

0.002372386 

 

Question 2b 

In this model combining all factors, all factors except attractiveness post significant results that indicate that they have an effect on the profitability of the hotel venture. In this instance, the attractiveness of the hotel posts marginally significant results to indicate that attractiveness contributes to profitability, as opposed to the first model where there was strong significance. The first regression model gives more credible information about the effect of attractiveness, since it considers attractiveness as its own factor and avoids the confounding effect provided by the other factors. However, while considering the business environment as a whole, which this study has done, the second model provides a more wholesome view of the business situation. 

Table 3 : Q2b Regression Result 

SUMMARY OUTPUT 

       
           

Regression Statistics 

       

Multiple R 

0.944026 

       

R Square 

0.891185 

       

Adjusted R Square 

0.88111 

       

Standard Error 

90.46589 

       

Observations 

60 

       
           

ANOVA 

         
 

df 

SS 

MS 

Significance F 

Regression 

3619452 

723890.4 

88.45107107 

9.35899E-25 

Residual 

54 

441940.2 

8184.077 

   

Total 

59 

4061392 

     
           
 

Coefficients 

Standard Error 

t Stat 

P-value 

 

Intercept 

-548.648 

58.79416 

-9.33168 

7.46218E-13 

 

Size 

255.9772 

26.09853 

9.808107 

1.35161E-13 

 

Advertexp 

9.570961 

1.033152 

9.26385 

9.53501E-13 

 

Mgrperf 

91.36652 

12.37958 

7.380419 

9.93413E-10 

 

Neighbors 

19.65079 

1.741969 

11.28079 

8.09143E-16 

 

Attract 

-3.25107 

14.50795 

-0.22409 

0.823533862 

 

Question 3 

Local advertising expenditure is regressed against profits to determine whether there is an effect when advertising expenditure increased. The significance value for the regression model is 0.0004, which indicates that there is a relationship. The coefficient for the advertising is positive, indicating that there is an increasing effect on profit when advertising expenditure is increased. 

Table 4 : Q3 Regression Output 

SUMMARY OUTPUT 

         
           

Regression Statistics 

       

Multiple R 

0.441674452 

       

R Square 

0.195076321 

       

Adjusted R Square 

0.181198327 

       

Standard Error 

237.4109898 

       

Observations 

60 

       
           

ANOVA 

         
 

df 

SS 

MS 

Significance F 

Regression 

792281.4446 

792281.4446 

14.05652106 

0.000411248 

Residual 

58 

3269110.728 

56363.97806 

   

Total 

59 

4061392.172 

     
           
 

Coefficients 

Standard Error 

t Stat 

P-value 

 

Intercept 

124.696973 

87.56959334 

1.4239757 

0.159811449 

 

Advertexp 

9.869514065 

2.632430091 

3.749202723 

0.000411248 

 

Question 4 

Profit is regressed against manager performance rating to determine whether more talented managers could lead to higher profits at different hotel sites. According to the data, p-value of 0.0002 vacates the null hypothesis that there is no relationship between these two factors. The coefficient provided as 124. 

SUMMARY OUTPUT 

       
           

Regression Statistics 

       

Multiple R 

0.458343 

       

R Square 

0.210078 

       

Adjusted R Square 

0.196459 

       

Standard Error 

235.1882 

       

Observations 

60 

       
           

ANOVA 

         
 

df 

SS 

MS 

Significance F 

Regression 

853209.6 

853209.6 

15.42498 

0.000231 

Residual 

58 

3208183 

55313.49 

   

Total 

59 

4061392 

     
           
 

Coefficients 

Standard Error 

t Stat 

P-value 

 

Intercept 

0.208631 

114.1176 

0.001828 

0.998548 

 

Mgrperf 

124.6264 

31.73201 

3.927465 

0.000231 

 
Illustration
Cite this page

Select style:

Reference

StudyBounty. (2023, September 15). Regression Analysis: Definition, Types, and Examples.
https://studybounty.com/2-regression-analysis-definition-types-and-examples-coursework

illustration

Related essays

We post free essay examples for college on a regular basis. Stay in the know!

Texas Roadhouse: The Best Steakhouse in Town

Running Head: TEXAS ROADHOUSE 1 Texas Roadhouse Prospective analysis is often used to determine specific challenges within systems used in operating different organizations. Thereafter, the leadership of that...

Words: 282

Pages: 1

Views: 93

The Benefits of an Accounting Analysis Strategy

Running head: AT & T FINANCE ANALLYSIS 1 AT & T Financial Analysis Accounting Analysis strategy and Disclosure Quality Accounting strategy is brought about by management flexibility where they can use...

Words: 1458

Pages: 6

Views: 81

Employee Benefits: Fringe Benefits

_De Minimis Fringe Benefits _ _Why are De Minimis Fringe Benefits excluded under Internal Revenue Code section 132(a)(4)? _ De minimis fringe benefits are excluded under Internal Revenue Code section 132(a)(4)...

Words: 1748

Pages: 8

Views: 196

Standard Costs and Variance Analysis

As the business firms embark on production, the stakeholders have to plan the cost of offering the services sufficiently. Therefore, firms have to come up with a standard cost and cumulatively a budget, which they...

Words: 1103

Pages: 4

Views: 179

The Best Boat Marinas in the United Kingdom

I. Analyzing Information Needs The types of information that Molly Mackenzie Boat Marina requires in its business operations and decision making include basic customer information, information about the rates,...

Words: 627

Pages: 4

Views: 97

Spies v. United States: The Supreme Court's Landmark Ruling on Espionage

This is a case which dealt with the issue of income tax evasion. The case determined that for income tax evasion to be found to have transpired, one must willfully disregard their duty to pay tax and engage in ways...

Words: 277

Pages: 1

Views: 120

illustration

Running out of time?

Entrust your assignment to proficient writers and receive TOP-quality paper before the deadline is over.

Illustration