27 Nov 2022

75

Bachelor’s Degree Recipients: How to Find the Right Program

Format: APA

Academic level: Master’s

Paper type: Coursework

Words: 1327

Pages: 5

Downloads: 0

The Wall Street Journal reported that bachelor’s degree recipients with majors in business average starting salaries of $53,900 in 2012 ( The Wall Street Journal , March 17, 2014). The results for a sample of 100 business majors receiving a bachelor’s degree in 2013 showed a mean starting salary of $55,144 with a sample standard deviation of $5,200. Conduct a hypothesis test to determine whether the mean starting salary for business majors in 2013 is greater than the mean starting salary in 2012. Use a = .01 as the level of significance.

Solution 

We are given the following: 

Hypothesis: 

Null Hypothesis: H o : There is no difference between the means

Alternative Hypothesis: H a : The mean starting salary for business majors in 2013 is greater than the mean starting salary in 2012.

It’s time to jumpstart your paper!

Delegate your assignment to our experts and they will do the rest.

Get custom essay

Mathematically; 

Test-Statistic: 

The formula for calculating t-statistic is:

By using the p-value calculator from t-statistic located at Socscistatistics, we can determine the P-value for the calculated t-statistic. Alternatively, we can use the t-statistic table to determine this value. The p-value is given below:

Decision Rule: 

Here,

Since the p value is less than level of significance, we reject the null hypothesis (H o ). 

Conclusion: 

The mean starting salary for business majors in 2013 is greater than the mean starting salary in 2012. 

In Born Together – Reared Apart: The Landmark Minnesota Twin Study (2012), Nancy Segal discusses the efforts of research psychologists at the University of Minnesota to understand similarities and differences between twins by studying sets of twins who were raised separately. Below are critical reading SAT scores for several pairs of identical twins (twins who share all of their genes), one of whom was raised in a family with no other children (no siblings) and one of whom was raised in a family with other children (with siblings).

What is the mean difference between the critical reading SAT scores for the twins raised with no siblings and the twins raised with siblings?

No Siblings 

With Siblings 

   

Name 

SAT Score 

Name 

SAT Score 

di 

di^2 
Bob

440

Donald

420

20 

400 

Matthew

610

Ronald

540

70 

4900 

Shannon

590

Kedriana

630

-40 

1600 

Tyler

390

Kevin

430

-40 

1600 

Michelle

410

Erin

460

-50 

2500 

Darius

430

Michael

490

-60 

3600 

Wilhelmina

510

Josephine

460

50 

2500 

Donna

620

Jasmine

540

80 

6400 

Drew

510

Kraig

460

50 

2500 

Lucinda

680

Bernadette

650

30 

900 

Barry

580

Larry

450

130 

16900 

Julie

610

Jennifer

640

-30 

900 

Hannah

510

Diedra

460

50 

2500 

Roger

630

Latishia

580

50 

2500 

Garrett

570

Bart

490

80 

6400 

Roger

630

Kara

640

-10 

100 

Nancy

530

Rachel

560

-30 

900 

Sam

590

Joey

610

-20 

400 

Simon

500

Drew

520

-20 

400 

Megan

610

Annie

640

-30 

900 

Total

10950 

 

10670 

280 

58800 

Mean

547.5 

 

533.5 

 

3094.737 

Standard Deviation

80.37 

 

78.06 

 

55.63036 

Alternatively,

The mean difference can be calculated by dividing the sum of differences between the sample by n, i.e.

Provide a 90% confidence interval estimate of the mean difference between the critical reading SAT scores for the twins raised with no siblings and the twins raised with siblings

Using the t-distribution table,

The formula for calculating the confidence interval (CI) is:

Conduct a hypothesis test of equality of the critical reading SAT scores for the twins raised with no siblings and the twins raised with siblings at a = .01. What is your conclusion?

Using the t table,

Thus, the result is not significant. 

Conclusion: 

There is no evidence that the SAT scores for the twins raised with no siblings is different from twins raised with siblings. 

No Siblings 

With Siblings 

Name 

SAT Score 

Name 

SAT Score 

Bob 

440 

Donald 

420 

Matthew 

610 

Ronald 

540 

Shannon 

590 

Kedriana 

630 

Tyler 

390 

Kevin 

430 

Michelle 

410 

Erin 

460 

Darius 

430 

Michael 

490 

Wilhelmina 

510 

Josephine 

460 

Donna 

620 

Jasmine 

540 

Drew 

510 

Kraig 

460 

Lucinda 

680 

Bernadette 

650 

Barry 

580 

Larry 

450 

Julie 

610 

Jennifer 

640 

Hannah 

510 

Diedra 

460 

Roger 

630 

Latishia 

580 

Garrett 

570 

Bart 

490 

Roger 

630 

Kara 

640 

Nancy 

530 

Rachel 

560 

Sam 

590 

Joey 

610 

Simon 

500 

Drew 

520 

Megan 

610 

Annie 

640 

Part variability is critical in the manufacturing of ball bearings. Large variances in the size of the ball bearings cause bearing failure and rapid wearout. Production standards call for a maximum variance of .0001 when the bearing sizes are measured in inches. A sample of 15 bearings shows a sample standard deviation of .014 inches.

Use a = .10 to determine whether the sample indicates that the maximum acceptable variance is being exceeded.

Solution: 

We are given the following:

Hypothesis Testing:

The result is not significant. Thus, we reject the null hypothesis. 

Conclusion: 

The sample indicates that the maximum acceptable variance is being exceeded. 

Compute the 90% confidence interval estimate of the variance of the ball bearings in the population.

Solution: 

We are given the following:

The CI can be calculated using the following formula:

Using the z table, 

Thus,

The Transactional Records Access Clearinghouse at Syracuse University reported data showing the odds of an Internal Revenue Service audit. The following table shows the average adjusted gross income reported and the percent of the returns that were audited for 20 selected IRS districts.

Develop the estimated regression equation that could be used to predict the percent audited given the average adjusted gross income reported.

Solution: 

Microsoft Excel was used to carry out the regression analysis. The table below shows the regression output.

SUMMARY OUTPUT               
                 

Regression Statistics 

             
Multiple R 

0.465892 

             
R Square 

0.217056 

             
Adjusted R Square 

0.173559 

             
Standard Error 

0.208768 

             
Observations 

20 

             
                 
ANOVA                 
 

df 

SS 

MS 

Significance F 

     
Regression 

0.21749 

0.21749 

4.990136 

0.038419 

     
Residual 

18 

0.78451 

0.043584 

         
Total 

19 

1.002 

           
                 
 

Coefficients 

Standard Error 

t Stat 

P-value 

Lower 95% 

Upper 95% 

Lower 95.0% 

Upper 95.0% 

Intercept 

-0.47095 

0.584247 

-0.80609 

0.430714 

-1.69841 

0.756503 

-1.69841 

0.7565034 

X Variable 1 

3.87E-05 

1.73E-05 

2.233861 

0.038419 

2.3E-06 

7.51E-05 

2.3E-06 

7.50539E-05 

From the regression output,

Thus, the regression equation is:

Here,

At the .05 level of significance, determine whether the adjusted gross income and the percent audited are related.

From the regression output,

From the F-distribution table,

The result is significant. 

Thus, the adjusted gross income and the percent audited are related. 

Did the estimated regression equation provide a good fit? Explain.

No. The estimated regression equation did not provide a good fit. This is because the r-square value for the regression model is not close to 1. 

Use the estimated regression equation developed in part (a) to calculate a 95% confidence interval for the expected percent audited for districts with an average adjusted gross income of $35,000.

From the regression output,

From the t-distribution table,

Thus,

District 

Adjusted Gross Income ($) 

Percent Audited 

Los Angeles 

36,664 

1.3 

Sacramento 

38,845 

1.1 

Atlanta 

34,886 

1.1 

Boise 

32,512 

1.1 

Dallas 

34,531 

1.0 

Providence 

35,995 

1.0 

San Jose 

37,799 

0.9 

Cheyenne 

33,876 

0.9 

Fargo 

30,513 

0.9 

New Orleans 

30,174 

0.9 

Oklahoma City 

30,060 

0.8 

Houston 

37,153 

0.8 

Portland 

34,918 

0.7 

Phoenix 

33,291 

0.7 

Augusta 

31,504 

0.7 

Albuquerque 

29,199 

0.6 

Greensboro 

33,072 

0.6 

Columbia 

30,859 

0.5 

Nashville 

32,566 

0.5 

Buffalo 

34,296 

0.5 

The Tire Rack, America’s leading online distributor of tires and wheels, conducts extensive testing to provide customers with products that are right for their vehicle, driving style, and driving conditions. In addition, the Tire Rack maintains and independent consumer survey to help drivers help each other by sharing their long-term driving experiences. The following data show survey ratings (1 to 10 scale with 10 the highest rating) for 18 maximum performance summer tires. The variable Steering rates the tire’s steering responsiveness, Tread Wear rates quickness of wear based on the driver’s expectations, and Buy Again rates the driver’s overall tire satisfaction and desire to purchase the same tire again.

Develop the estimated regression equation that can be used to predict the Buy Again rating given based on the Steering rating. At the .05 level of significance, test for a significant relationship.

SUMMARY OUTPUT               
                 

Regression Statistics 

             
Multiple R 

0.918166 

             
R Square 

0.843029 

             
Adjusted R Square 

0.833218 

             
Standard Error 

0.841071 

             
Observations 

18 

             
                 
ANOVA                 
 

df 

SS 

MS 

Significance F 

     
Regression 

60.78659 

60.78659 

85.9295 

7.8E-08 

     
Residual 

16 

11.31841 

0.707401 

         
Total 

17 

72.105 

           
                 
 

Coefficients 

Standard Error 

t Stat 

P-value 

Lower 95% 

Upper 95% 

Lower 95.0% 

Upper 95.0% 

Intercept 

-7.52183 

1.466759 

-5.1282 

0.000101 

-10.6312 

-4.41244 

-10.6312 

-4.41244 

X Variable 1 

1.815067 

0.195804 

9.269817 

7.8E-08 

1.399981 

2.230153 

1.399981 

2.230153 

From the regression output,

Thus,

Did the estimated regression equation developed in part (a) provide a good fit to the data? Explain.

Yes. The estimated regression equation did provide a good fit. This is because the r-square value for the regression model is very close to 1. 

Develop an estimated regression equation that can be used to predict the Buy Again rating given the Steering rating and the Tread Wear rating.

SUMMARY OUTPUT               
                 

Regression Statistics 

             
               
Multiple R 

0.965279 

             
R Square 

0.931764 

             
Adjusted R Square 

0.922665 

             
Standard Error 

0.572723 

             
Observations 

18 

             
                 
ANOVA                 
 

df 

SS 

MS 

Significance F 

     
Regression 

67.18482 

33.59241 

102.4121 

1.8E-09 

     
Residual 

15 

4.920181 

0.328012 

         
Total 

17 

72.105 

           
                 
 

Coefficients 

Standard Error 

t Stat 

P-value 

Lower 95% 

Upper 95% 

Lower 95.0% 

Upper 95.0% 

Intercept 

-5.38767 

1.109533 

-4.8558 

0.00021 

-7.75259 

-3.02276 

-7.75259 

-3.02276 

X Variable 1 

0.689871 

0.287547 

2.399155 

0.029874 

0.076978 

1.302764 

0.076978 

1.302764 

X Variable 2 

0.91133 

0.206343 

4.416569 

0.0005 

0.47152 

1.351141 

0.47152 

1.351141 

From the regression output,

Thus,

Is the addition of the Tread Wear independent variable significant? Use a = .05.

From the regression output,

Thus, there is sufficient evidence to support the claim that the addition of the Tread Wear independent variable is significant. 

Tire 

Steering 

Tread Wear 

Buy Again 

Goodyear Assurance Triple Tred 

8.9 

8.5 

8.1 

Michelin HydroEdge 

8.9 

9.0 

8.3 

Michelin Harmony 

8.3 

8.8 

8.2 

Dunlop SP60 

8.2 

8.5 

7.9 

Goodyear Assurance ComforTred 

7.9 

7.7 

7.1 

Yokohama Y372 

8.4 

8.2 

8.9 

Yokohama Aegis LS4 

7.9 

7.0 

7.1 

Kumho Power Star 758 

7.9 

7.9 

8.3 

Goodyear Assurance 

7.6 

5.8 

4.5 

Hankook H406 

7.8 

6.8 

6.2 

Michelin Energy LX4 

7.4 

5.7 

4.8 

Michelin MX4 

7.0 

6.5 

5.3 

Michelin Symmetry 

6.9 

5.7 

4.2 

Kumho 722 

7.2 

6.6 

5.0 

Dunlop SP 40 A/S 

6.2 

4.2 

3.4 

Bridgestone Insignia SE200 

5.7 

5.5 

3.6 

Goodyear Integrity 

5.7 

5.4 

2.9 

Dunlop SP20 FE 

5.7 

5.0 

3.3 

The following data show the daily closing prices (in dollars per share) for a stock.

Define the independent variable Period, where Period = 1 corresponds to the data for November 3, Period = 2 corresponds to the data for November 4, and so on. Develop the estimated regression equation that can be used to predict the closing price given the value of the Period.

SUMMARY OUTPUT               
                 

Regression Statistics 

             
Multiple R 

0.970858 

             
R Square 

0.942564 

             
Adjusted R Square 

0.939373 

             
Standard Error 

0.603819 

             
Observations 

20 

             
                 
ANOVA                 
 

df 

SS 

MS 

Significance F 

     
Regression 

107.6999 

107.6999 

295.3942 

1.3E-12 

     
Residual 

18 

6.562754 

0.364597 

         
Total 

19 

114.2627 

           
                 
 

Coefficients 

Standard Error 

t Stat 

P-value 

Lower 95% 

Upper 95% 

Lower 95.0% 

Upper 95.0% 

Intercept 

81.98942 

0.280493 

292.3048 

1.51E-34 

81.40013 

82.57871 

81.40013 

82.57871 

X Variable 1 

0.402436 

0.023415 

17.18703 

1.3E-12 

0.353243 

0.451629 

0.353243 

0.451629 

From the regression output,

Thus,

At the .05 level of significance, test for any positive autocorrelation in the data.

From the regression output,

Thus, 

Positive autocorrelation is present. 

Date 

Price ($) 

Nov. 3 

82.87 

Nov. 4 

83.00 

Nov. 7 

83.61 

Nov. 8 

83.15 

Nov. 9 

82.84 

Nov. 10 

83.99 

Nov. 11 

84.55 

Nov. 14 

84.36 

Nov. 15 

85.53 

Nov. 16 

86.54 

Nov. 17 

86.89 

Nov. 18 

87.77 

Nov. 21 

87.29 

Nov. 22 

87.99 

Nov. 23 

88.80 

Nov. 25 

88.80 

Nov. 28 

89.11 

Nov. 29 

89.10 

Nov. 30 

88.90 

Dec. 1 

89.21 

Illustration
Cite this page

Select style:

Reference

StudyBounty. (2023, September 16). Bachelor’s Degree Recipients: How to Find the Right Program.
https://studybounty.com/bachelors-degree-recipients-how-to-find-the-right-program-coursework

illustration

Related essays

We post free essay examples for college on a regular basis. Stay in the know!

17 Sep 2023
Statistics

Scatter Diagram: How to Create a Scatter Plot in Excel

Trends in statistical data are interpreted using scatter diagrams. A scatter diagram presents each data point in two coordinates. The first point of data representation is done in correlation to the x-axis while the...

Words: 317

Pages: 2

Views: 187

17 Sep 2023
Statistics

Calculating and Reporting Healthcare Statistics

10\. The denominator is usually calculated using the formula: No. of available beds x No. of days 50 bed x 1 day =50 11\. Percentage Occupancy is calculated as: = =86.0% 12\. Percentage Occupancy is calculated...

Words: 133

Pages: 1

Views: 150

17 Sep 2023
Statistics

Survival Rate for COVID-19 Patients: A Comparative Analysis

Null: There is no difference in the survival rate of COVID-19 patients in tropical countries compared to temperate countries. Alternative: There is a difference in the survival rate of COVID-19 patients in tropical...

Words: 255

Pages: 1

Views: 251

17 Sep 2023
Statistics

5 Types of Regression Models You Should Know

Theobald et al. (2019) explore the appropriateness of various types of regression models. Despite the importance of regression in testing hypotheses, the authors were concerned that linear regression is used without...

Words: 543

Pages: 2

Views: 175

17 Sep 2023
Statistics

The Motion Picture Industry - A Comprehensive Overview

The motion picture industry is among some of the best performing industries in the country. Having over fifty major films produced each year with different performances, it is necessary to determine the success of a...

Words: 464

Pages: 2

Views: 86

17 Sep 2023
Statistics

Spearman's Rank Correlation Coefficient (Spearman's Rho)

The Spearman’s rank coefficient, sometimes called Spearman’s rho is widely used in statistics. It is a nonparametric concept used to measure statistical dependence between two variables. It employs the use of a...

Words: 590

Pages: 2

Views: 309

illustration

Running out of time?

Entrust your assignment to proficient writers and receive TOP-quality paper before the deadline is over.

Illustration