21 Nov 2022

134

House Value vs Rental Value: Which is More Important?

Format: APA

Academic level: College

Paper type: Math Problem

Words: 581

Pages: 3

Downloads: 0

10.1.2 

Table #10.1.6: Data of House Value versus Rental 

Value 

Rental 

Value 

Rental 

Value 

Rental 

Value 

Rental 

81000 

6656 

77000 

4576 

75000 

7280 

67500 

6864 

95000 

7904 

94000 

8736 

90000 

6240 

85000 

7072 

121000 

12064 

115000 

7904 

110000 

7072 

104000 

7904 

135000 

8320 

130000 

9776 

126000 

6240 

125000 

7904 

145000 

8320 

140000 

9568 

140000 

9152 

135000 

7488 

165000 

13312 

165000 

8528 

155000 

7488 

148000 

8320 

178000 

11856 

174000 

10400 

170000 

9568 

170000 

12688 

200000 

12272 

200000 

10608 

194000 

11232 

190000 

8320 

214000 

8528 

208000 

10400 

200000 

10400 

200000 

8320 

240000 

10192 

240000 

12064 

240000 

11648 

225000 

12480 

289000 

11648 

270000 

12896 

262000 

10192 

244500 

11232 

325000 

12480 

310000 

12480 

303000 

12272 

300000 

12480 

Scatter Plot 

Regression Equation 

ŷ = 0.02X + 5363.86 

Calculating rental income for a house worth of: 

$230,000 

ŷ = 0.02 (230,000) + 5363.86 

ŷ = 9,963.86 

$400,000 

ŷ = 0.02 (400,000) + 5363.86 

ŷ = 13,363.86 

Note : The calculated rental income for $230,000 value appears to be closer than that of $400,000 to the true rental income. This is because the higher the x value in a regression equation, the lower the chances of accuracy. 

It’s time to jumpstart your paper!

Delegate your assignment to our experts and they will do the rest.

Get custom essay

10.1.4 

Table #10.1.8: Data of Health Expenditure versus Prenatal Care 

Health Expenditure (% of GDP) 

Prenatal Care (%) 

9.6 

47.9 

3.7 

54.6 

5.2 

93.7 

5.2 

84.7 

10.0 

100.0 

4.7 

42.5 

4.8 

96.4 

6.0 

77.1 

5.4 

58.3 

4.8 

95.4 

4.1 

78.0 

6.0 

93.3 

9.5 

93.3 

6.8 

93.7 

6.1 

89.8 

Scatter Plot 

Regression Equation 

ŷ = 1.6606 + 69.7394 

Calculating the percent of women receiving prenatal care for: 

5.0% of GDP 

ŷ = 1.6606 (5) + 69.7394 

ŷ = 78.0424 

12.0% of GDP 

ŷ = 1.6606 (12) + 69.7394 

ŷ = 89.6666 

Note : The percent of women receiving prenatal care for 5.0% GDP appears to be closer than that of 12.0% of GDP to the true percentage. This is because the higher the x value in a regression equation, the lower the chances of accuracy. 

10.2.2 

Table #10.1.6: Data of House Value versus Rental 

Value 

Rental 

Value 

Rental 

Value 

Rental 

Value 

Rental 

81000 

6656 

77000 

4576 

75000 

7280 

67500 

6864 

95000 

7904 

94000 

8736 

90000 

6240 

85000 

7072 

121000 

12064 

115000 

7904 

110000 

7072 

104000 

7904 

135000 

8320 

130000 

9776 

126000 

6240 

125000 

7904 

145000 

8320 

140000 

9568 

140000 

9152 

135000 

7488 

165000 

13312 

165000 

8528 

155000 

7488 

148000 

8320 

178000 

11856 

174000 

10400 

170000 

9568 

170000 

12688 

200000 

12272 

200000 

10608 

194000 

11232 

190000 

8320 

214000 

8528 

208000 

10400 

200000 

10400 

200000 

8320 

240000 

10192 

240000 

12064 

240000 

11648 

225000 

12480 

289000 

11648 

270000 

12896 

262000 

10192 

244500 

11232 

325000 

12480 

310000 

12480 

303000 

12272 

300000 

12480 

Calculations 

X Values 

∑ = 8370000 

Mean = 174375 

∑ (X - Mx)2 = SSx = 226935750000 

Y Values 

∑ = 461344 

Mean = 9611.333 

∑ (Y - My)2 = SSy = 230247402.667 

X and Y Combined 

N = 48 

∑ (X - Mx) (Y - My) = 5527756000 

Correlation coefficient (R) Calculation: 

R = ∑ ((X - My) (Y - Mx)) / √((SSx)(SSy)) 

R = 5527756000 / √ ((226935750000) (230247402.667)) = 0.7647 

R = 0.7647 

This is a strong positive correlation implying that high X variable scores (values) go with high Y variable scores (rental income). 

Coefficient of determination (R 2 ) Calculation: 

R 2 = (0.7647)2 

R 2 = 0.5848 

10.2.4 

Table #10.1.8: Data of Health Expenditure versus Prenatal Care 

Health Expenditure (% of GDP) 

Prenatal Care (%) 

9.6 

47.9 

3.7 

54.6 

5.2 

93.7 

5.2 

84.7 

10.0 

100.0 

4.7 

42.5 

4.8 

96.4 

6.0 

77.1 

5.4 

58.3 

4.8 

95.4 

4.1 

78.0 

6.0 

93.3 

9.5 

93.3 

6.8 

93.7 

6.1 

89.8 

X Values ∑ = 91.9 Mean = 6.127 ∑(X - M x ) 2  = SS x  = 56.729 Y Values ∑ = 1198.7 Mean = 79.913 ∑(Y - M y ) 2  = SS y  = 5318.417 X and Y Combined N  = 15 ∑(X - M x )(Y - M y ) = 94.205 R Calculation R = ∑((X - M y )(Y - M x )) / √((SS x )(SS y )) R = 94.205 / √((56.729)(5318.417)) = 0.1715 R = 0.1715 

Although technically a positive correlation, the relationship between the variables is weak 

Coefficient of determination (R 2 ) Calculation: 

R 2 = 0.0294 

10.3.2 

Table #10.1.6: Data of House Value versus Rental 

Value 

Rental 

Value 

Rental 

Value 

Rental 

Value 

Rental 

81000 

6656 

77000 

4576 

75000 

7280 

67500 

6864 

95000 

7904 

94000 

8736 

90000 

6240 

85000 

7072 

121000 

12064 

115000 

7904 

110000 

7072 

104000 

7904 

135000 

8320 

130000 

9776 

126000 

6240 

125000 

7904 

145000 

8320 

140000 

9568 

140000 

9152 

135000 

7488 

165000 

13312 

165000 

8528 

155000 

7488 

148000 

8320 

178000 

11856 

174000 

10400 

170000 

9568 

170000 

12688 

200000 

12272 

200000 

10608 

194000 

11232 

190000 

8320 

214000 

8528 

208000 

10400 

200000 

10400 

200000 

8320 

240000 

10192 

240000 

12064 

240000 

11648 

225000 

12480 

289000 

11648 

270000 

12896 

262000 

10192 

244500 

11232 

325000 

12480 

310000 

12480 

303000 

12272 

300000 

12480 

R = 0.7647 

N = 48 

The P-Value is < .00001. The result is significant at p < .05 

10.3.4 

Table #10.1.8: Data of Health Expenditure versus Prenatal Care 

Health Expenditure (% of GDP) 

Prenatal Care (%) 

9.6 

47.9 

3.7 

54.6 

5.2 

93.7 

5.2 

84.7 

10.0 

100.0 

4.7 

42.5 

4.8 

96.4 

6.0 

77.1 

5.4 

58.3 

4.8 

95.4 

4.1 

78.0 

6.0 

93.3 

9.5 

93.3 

6.8 

93.7 

6.1 

89.8 

R = 0.1715 

N = 15 

The P-Value is .541101. The result is  not  significant at p < .05. 

Illustration
Cite this page

Select style:

Reference

StudyBounty. (2023, September 15). House Value vs Rental Value: Which is More Important?.
https://studybounty.com/house-value-vs-rental-value-which-is-more-important-math-problem

illustration

Related essays

We post free essay examples for college on a regular basis. Stay in the know!

17 Sep 2023
Statistics

Scatter Diagram: How to Create a Scatter Plot in Excel

Trends in statistical data are interpreted using scatter diagrams. A scatter diagram presents each data point in two coordinates. The first point of data representation is done in correlation to the x-axis while the...

Words: 317

Pages: 2

Views: 187

17 Sep 2023
Statistics

Calculating and Reporting Healthcare Statistics

10\. The denominator is usually calculated using the formula: No. of available beds x No. of days 50 bed x 1 day =50 11\. Percentage Occupancy is calculated as: = =86.0% 12\. Percentage Occupancy is calculated...

Words: 133

Pages: 1

Views: 150

17 Sep 2023
Statistics

Survival Rate for COVID-19 Patients: A Comparative Analysis

Null: There is no difference in the survival rate of COVID-19 patients in tropical countries compared to temperate countries. Alternative: There is a difference in the survival rate of COVID-19 patients in tropical...

Words: 255

Pages: 1

Views: 251

17 Sep 2023
Statistics

5 Types of Regression Models You Should Know

Theobald et al. (2019) explore the appropriateness of various types of regression models. Despite the importance of regression in testing hypotheses, the authors were concerned that linear regression is used without...

Words: 543

Pages: 2

Views: 175

17 Sep 2023
Statistics

The Motion Picture Industry - A Comprehensive Overview

The motion picture industry is among some of the best performing industries in the country. Having over fifty major films produced each year with different performances, it is necessary to determine the success of a...

Words: 464

Pages: 2

Views: 86

17 Sep 2023
Statistics

Spearman's Rank Correlation Coefficient (Spearman's Rho)

The Spearman’s rank coefficient, sometimes called Spearman’s rho is widely used in statistics. It is a nonparametric concept used to measure statistical dependence between two variables. It employs the use of a...

Words: 590

Pages: 2

Views: 309

illustration

Running out of time?

Entrust your assignment to proficient writers and receive TOP-quality paper before the deadline is over.

Illustration