10.1.2
Table #10.1.6: Data of House Value versus Rental
Value |
Rental |
Value |
Rental |
Value |
Rental |
Value |
Rental |
81000 |
6656 |
77000 |
4576 |
75000 |
7280 |
67500 |
6864 |
95000 |
7904 |
94000 |
8736 |
90000 |
6240 |
85000 |
7072 |
121000 |
12064 |
115000 |
7904 |
110000 |
7072 |
104000 |
7904 |
135000 |
8320 |
130000 |
9776 |
126000 |
6240 |
125000 |
7904 |
145000 |
8320 |
140000 |
9568 |
140000 |
9152 |
135000 |
7488 |
165000 |
13312 |
165000 |
8528 |
155000 |
7488 |
148000 |
8320 |
178000 |
11856 |
174000 |
10400 |
170000 |
9568 |
170000 |
12688 |
200000 |
12272 |
200000 |
10608 |
194000 |
11232 |
190000 |
8320 |
214000 |
8528 |
208000 |
10400 |
200000 |
10400 |
200000 |
8320 |
240000 |
10192 |
240000 |
12064 |
240000 |
11648 |
225000 |
12480 |
289000 |
11648 |
270000 |
12896 |
262000 |
10192 |
244500 |
11232 |
325000 |
12480 |
310000 |
12480 |
303000 |
12272 |
300000 |
12480 |
Scatter Plot
Regression Equation
ŷ = 0.02X + 5363.86
Calculating rental income for a house worth of:
$230,000
ŷ = 0.02 (230,000) + 5363.86
ŷ = 9,963.86
$400,000
ŷ = 0.02 (400,000) + 5363.86
ŷ = 13,363.86
Note : The calculated rental income for $230,000 value appears to be closer than that of $400,000 to the true rental income. This is because the higher the x value in a regression equation, the lower the chances of accuracy.
Delegate your assignment to our experts and they will do the rest.
10.1.4
Table #10.1.8: Data of Health Expenditure versus Prenatal Care
Health Expenditure (% of GDP) |
Prenatal Care (%) |
9.6 |
47.9 |
3.7 |
54.6 |
5.2 |
93.7 |
5.2 |
84.7 |
10.0 |
100.0 |
4.7 |
42.5 |
4.8 |
96.4 |
6.0 |
77.1 |
5.4 |
58.3 |
4.8 |
95.4 |
4.1 |
78.0 |
6.0 |
93.3 |
9.5 |
93.3 |
6.8 |
93.7 |
6.1 |
89.8 |
Scatter Plot
Regression Equation
ŷ = 1.6606 X + 69.7394
Calculating the percent of women receiving prenatal care for:
5.0% of GDP
ŷ = 1.6606 (5) + 69.7394
ŷ = 78.0424
12.0% of GDP
ŷ = 1.6606 (12) + 69.7394
ŷ = 89.6666
Note : The percent of women receiving prenatal care for 5.0% GDP appears to be closer than that of 12.0% of GDP to the true percentage. This is because the higher the x value in a regression equation, the lower the chances of accuracy.
10.2.2
Table #10.1.6: Data of House Value versus Rental
Value |
Rental |
Value |
Rental |
Value |
Rental |
Value |
Rental |
81000 |
6656 |
77000 |
4576 |
75000 |
7280 |
67500 |
6864 |
95000 |
7904 |
94000 |
8736 |
90000 |
6240 |
85000 |
7072 |
121000 |
12064 |
115000 |
7904 |
110000 |
7072 |
104000 |
7904 |
135000 |
8320 |
130000 |
9776 |
126000 |
6240 |
125000 |
7904 |
145000 |
8320 |
140000 |
9568 |
140000 |
9152 |
135000 |
7488 |
165000 |
13312 |
165000 |
8528 |
155000 |
7488 |
148000 |
8320 |
178000 |
11856 |
174000 |
10400 |
170000 |
9568 |
170000 |
12688 |
200000 |
12272 |
200000 |
10608 |
194000 |
11232 |
190000 |
8320 |
214000 |
8528 |
208000 |
10400 |
200000 |
10400 |
200000 |
8320 |
240000 |
10192 |
240000 |
12064 |
240000 |
11648 |
225000 |
12480 |
289000 |
11648 |
270000 |
12896 |
262000 |
10192 |
244500 |
11232 |
325000 |
12480 |
310000 |
12480 |
303000 |
12272 |
300000 |
12480 |
Calculations
X Values
∑ = 8370000
Mean = 174375
∑ (X - Mx)2 = SSx = 226935750000
Y Values
∑ = 461344
Mean = 9611.333
∑ (Y - My)2 = SSy = 230247402.667
X and Y Combined
N = 48
∑ (X - Mx) (Y - My) = 5527756000
Correlation coefficient (R) Calculation:
R = ∑ ((X - My) (Y - Mx)) / √((SSx)(SSy))
R = 5527756000 / √ ((226935750000) (230247402.667)) = 0.7647
R = 0.7647
This is a strong positive correlation implying that high X variable scores (values) go with high Y variable scores (rental income).
Coefficient of determination (R 2 ) Calculation:
R 2 = (0.7647)2
R 2 = 0.5848
10.2.4
Table #10.1.8: Data of Health Expenditure versus Prenatal Care
Health Expenditure (% of GDP) |
Prenatal Care (%) |
9.6 |
47.9 |
3.7 |
54.6 |
5.2 |
93.7 |
5.2 |
84.7 |
10.0 |
100.0 |
4.7 |
42.5 |
4.8 |
96.4 |
6.0 |
77.1 |
5.4 |
58.3 |
4.8 |
95.4 |
4.1 |
78.0 |
6.0 |
93.3 |
9.5 |
93.3 |
6.8 |
93.7 |
6.1 |
89.8 |
X Values ∑ = 91.9 Mean = 6.127 ∑(X - M x ) 2 = SS x = 56.729 Y Values ∑ = 1198.7 Mean = 79.913 ∑(Y - M y ) 2 = SS y = 5318.417 X and Y Combined N = 15 ∑(X - M x )(Y - M y ) = 94.205 R Calculation R = ∑((X - M y )(Y - M x )) / √((SS x )(SS y )) R = 94.205 / √((56.729)(5318.417)) = 0.1715 R = 0.1715
Although technically a positive correlation, the relationship between the variables is weak
Coefficient of determination (R 2 ) Calculation:
R 2 = 0.0294
10.3.2
Table #10.1.6: Data of House Value versus Rental
Value |
Rental |
Value |
Rental |
Value |
Rental |
Value |
Rental |
81000 |
6656 |
77000 |
4576 |
75000 |
7280 |
67500 |
6864 |
95000 |
7904 |
94000 |
8736 |
90000 |
6240 |
85000 |
7072 |
121000 |
12064 |
115000 |
7904 |
110000 |
7072 |
104000 |
7904 |
135000 |
8320 |
130000 |
9776 |
126000 |
6240 |
125000 |
7904 |
145000 |
8320 |
140000 |
9568 |
140000 |
9152 |
135000 |
7488 |
165000 |
13312 |
165000 |
8528 |
155000 |
7488 |
148000 |
8320 |
178000 |
11856 |
174000 |
10400 |
170000 |
9568 |
170000 |
12688 |
200000 |
12272 |
200000 |
10608 |
194000 |
11232 |
190000 |
8320 |
214000 |
8528 |
208000 |
10400 |
200000 |
10400 |
200000 |
8320 |
240000 |
10192 |
240000 |
12064 |
240000 |
11648 |
225000 |
12480 |
289000 |
11648 |
270000 |
12896 |
262000 |
10192 |
244500 |
11232 |
325000 |
12480 |
310000 |
12480 |
303000 |
12272 |
300000 |
12480 |
R = 0.7647
N = 48
The P-Value is < .00001. The result is significant at p < .05
10.3.4
Table #10.1.8: Data of Health Expenditure versus Prenatal Care
Health Expenditure (% of GDP) |
Prenatal Care (%) |
9.6 |
47.9 |
3.7 |
54.6 |
5.2 |
93.7 |
5.2 |
84.7 |
10.0 |
100.0 |
4.7 |
42.5 |
4.8 |
96.4 |
6.0 |
77.1 |
5.4 |
58.3 |
4.8 |
95.4 |
4.1 |
78.0 |
6.0 |
93.3 |
9.5 |
93.3 |
6.8 |
93.7 |
6.1 |
89.8 |
R = 0.1715
N = 15
The P-Value is .541101. The result is not significant at p < .05.