1 Dec 2022

67

How to value your house - Zoopla

Format: MLA

Academic level: College

Paper type: Coursework

Words: 883

Pages: 3

Downloads: 0

Question 10.1.2 

When the House value = $230,000 

Substitute amount of rental for y and the value of house for x 

Amount of Rental = 0.0244 * (230,000) + 5363.9 =10,975.9 

When House Value of House= $400,000. Amount of Rental = 0.0244 * (400,000) + 5363.9 =15,123.9 

10,975.9 is closer to true income than 15,123.9. The prediction is done using both interpolation an extrapolation. Interpolation refers to the prediction within the range of data values while extrapolation is the prediction of outside the range of data values. The assumptions of the linear regression model may not hold outside the data range and hence increased chances of outliers. When the House value is $230,000, the x-value is within the range of values hence increased chances of accuracy as compared to House value = 400,000 which is outside the range of values. 

Question 10.1.4 

Regression equation is y= 1.6606 x + 69.739 

Where y is Parental care (%) and x is Health Expenditure (in % of GDP) 

Prenatal Care (%) = 1.6606 (Health Expenditure in %) + 69.739 

When x = 5.0% of GDP on health expenditure 

Prenatal Care (%) = 1.6606*(5) + 69.739 = 78.042% 

When x= 12.0% of GDP. 

Prenatal Care (%) = 1.6606*(12) + 69.739 = 89.6662% 

78.042% is closer to true percentage as compared to 89.6662%. Prediction through extrapolation comes with increased risk of inaccuracies because the assumptions of the linear regression model may not hold outside the data range. When the Health Expenditure is 5%), the x-value is within the range of data values hence increased chances of accuracy as compared when the Health Expenditure is 12 % which is outside the range of data values. 

It’s time to jumpstart your paper!

Delegate your assignment to our experts and they will do the rest.

Get custom essay

Question 10.2.2 

 

Value 

Rental 

Value 

 
Rental 

0.764716 

Correlation = 0.764716. The two variables are strongly positively correlated implying that an increase in one variable causes a simultaneous increase in the other. 

The coefficient of determination, r 2 = correlation 2 

= 0.764716* 0.764716 = 0.584790181 

Coefficient determination of 0.5848 implies that 58.48% of the variance in Y variable (value of House) is predictable from X variable (amount of rental costs). 

Question 10.2.4 

 

Health Expenditure (% of GDP) 

Prenatal Care (%) 

Health Expenditure (% of GDP) 

 
Prenatal Care (%) 

0.171505231 

Correlation = 0.171505231 . This means that Health Expenditure (% of GDP) is weakly positively correlated with Parental Care (%), an increase in one variable causes a simultaneous increase in the other. 

The coefficient of determination, r 2 = correlation 2 

= 0.171505231* 0.171505231 = 0.029414044 = 0.0294 

Coefficient determination of 0.0294 implies that 2.94% of the variance in Y variable ( Prenatal Care (% ) is predictable by X variable (Health Expenditure (% of GDP). 

Question 10.3.2 

The Pearson’s correlation coefficient is 0.764716 

 

Value 

Rental 

Value 

 
Rental 

0.764716 

The null hypothesis: r coefficient is NOT significantly different from zero, (r= 0) 

Alternative hypothesis: r coefficient is significantly different from zero (r > 0) 

Read the critical value from Tables for critical value: Pearson’s coefficient 

The degrees of freedom = n- 2 = 48 – 2 = 46 

Level of significance = 0.05 

The critical value for 1-tailed is = 0.243 

Since the correlation coefficient r > than the critical value (0.7647> 0.243), we reject the null hypothesis and conclude that the correlation coefficient is positive at 5% level of significance. 

Question 10.3.4 

 

Health Expenditure (% of GDP) 

Prenatal Care (%) 

Health Expenditure (% of GDP) 

 
Prenatal Care (%) 

0.171505231 

The null hypothesis, H0: r coefficient is NOT significantly different from zero, (r= 0) 

Alternative hypothesis, H1: r coefficient is significantly different from zero (r  0) 

Read the critical value from Tables for critical value: Pearson’s coefficient 

The degrees of freedom = n-2 = 15-2 = 13 

Level of significance = 0.05 

The critical value for 2-tailed is =  0.514 .Since the correlation coefficient r < than the critical value (0.1715< 0.514), we fail to reject the null hypothesis and conclude that the correlation coefficient is not significant at 5% level of significance. 

Question 11.1.2 

Null hypothesis, H0: There is no association between the variables. 

Alternative hypothesis, H1: There exists an association between the variables. 

Chi-square = 

df = (No. of rows-1)(No. of columns-1) = 3*2 = 6 

Observed 

 

Period 

Row 
Activity  Morning  Noon  Afternoon  Evening  Total 
Travel 

14 

13 

39 

Feed 

28 

56 

88 

Social 

38 

10 

62 

Column Total 

72 

15 

23 

79 

189 

Calculate expected value = (row total * column total)/ Overall Total 

Expected 

 
Activity  Morning  Noon  Afternoon  Evening 
Travel 

14.85714 

3.095238095 

4.746031746 

16.3015873 

Feed 

33.52381 

6.984126984 

10.70899471 

36.78306878 

Social 

23.61905 

4.920634921 

7.544973545 

25.91534392 

Observed  Expected  (Observed - Expected)  (Observed - Expected)^2  /Expected 

14.85714 

-8.857142857 

78.44897959 

5.28021978 

28 

33.52381 

-5.523809524 

30.51247166 

0.91017316 

38 

23.61905 

14.38095238 

206.8117914 

8.756144393 

3.095238 

2.904761905 

8.437641723 

2.726007326 

6.984127 

-2.984126984 

8.905013857 

1.275036075 

4.920635 

0.079365079 

0.006298816 

0.001280082 

14 

4.746032 

9.253968254 

85.63592845 

18.04369061 

10.70899 

-10.70899471 

114.6825677 

10.70899471 

7.544974 

1.455026455 

2.117101985 

0.280597668 

13 

16.30159 

-3.301587302 

10.90047871 

0.668675909 

56 

36.78307 

19.21693122 

369.2904454 

10.03968558 

10 

25.91534 

-15.91534392 

253.2981719 

9.774061759 

Total       

68.46456706 

Critical value at 0.05 level of significance = 12.59 

The Chi-square test statistic > critical value, we therefore reject the null hypothesis and conclude that there exists sufficient statistical evidence to conclude that that the activity and time period are dependent for dolphins. 

Question 11.1.4 

Null hypothesis, H0: There is no association between the variables. 

Alternative hypothesis, H1: There exists an association between the variables. 

Chi-square = 

df = (No. of rows-1)(No. of columns-1) = 4*3 = 12 

 

Age Group 

Row Total 
Education  25-34  35-44  45-54  55-64  >64   
Did not complete HS 

5416 

5030 

5777 

7606 

13746 

37575 

Competed HS 

16431 

1855 

9435 

8795 

7558 

44074 

College 1-3 years 

8555 

5576 

3124 

2524 

2503 

22282 

College 4 or more years 

9771 

7596 

3904 

3109 

2483 

26863 

Column Total 

40173 

20057 

22240 

22034 

26290 

130794 

 

Expected 

 
 

Age Group 

Education  25-34  35-44  45-54  55-64  >64 
Did not complete HS 

11541.05292 

5762.051585 

6389.192165 

6330.011698 

7552.6916 

Competed HS 

13537.20203 

6758.660321 

7494.271603 

7424.855238 

8859.0108 

College 1-3 years 

6843.852057 

3416.900424 

3788.795205 

3753.701148 

4478.7512 

College 4 or more years 

8250.893 

4119.387671 

4567.741028 

4525.431916 

5399.5464 

Observed  Expected  (Observed - Expected)  (Observed - Expected)^2  /Expected 

5416 

11541.05292 

-6125.052915 

37516273.21 

3250.680288 

16431 

13537.20203 

2893.797972 

8374066.705 

618.5965673 

8555 

6843.852057 

1711.147943 

2928027.281 

427.8332227 

9771 

8250.893 

1520.107 

2310725.292 

280.0576001 

5030 

5762.051585 

-732.0515849 

535899.523 

93.00498531 

1855 

6758.660321 

-4903.660321 

24045884.54 

3557.788585 

5576 

3416.900424 

2159.099576 

4661710.981 

1364.309872 

7596 

4119.387671 

3476.612329 

12086833.29 

2934.133482 

5777 

6389.192165 

-612.1921648 

374779.2466 

58.658315 

9435 

7494.271603 

1940.728397 

3766426.712 

502.5740875 

3124 

3788.795205 

-664.7952047 

441952.6642 

116.6472824 

3904 

4567.741028 

-663.7410279 

440552.1521 

96.44858353 

7606 

6330.011698 

1275.988302 

1628146.147 

257.2106064 

8795 

7424.855238 

1370.144762 

1877296.669 

252.8394977 

2524 

3753.701148 

-1229.701148 

1512164.914 

402.8463787 

3109 

4525.431916 

-1416.431916 

2006279.372 

443.3343401 

13746 

7552.691637 

6193.308363 

38357068.48 

5078.595859 

7558 

8859.010811 

-1301.010811 

1692629.13 

191.0629941 

2503 

4478.751166 

-1975.751166 

3903592.67 

871.5806092 

2483 

5399.546386 

-2916.546386 

8506242.821 

1575.362487 

       

22373.56564 

Critical value at 0.05 level of significance = 21.03 

The Chi-square test statistic > critical value, we therefore reject the null hypothesis and conclude that there exists sufficient statistical evidence to conclude educational attainment and age are dependent 

Question 11.2.4 

Null hypothesis, H0: There variables are in the same proportion 

Alternative hypothesis, H1: The variables are not in the same proportion 

Chi-square = 

df = (k-1) = 3 

Age 

14-May 

15-29  30-49  50-69  Total 
Cardiovascular Frequency 

16 

56 

433 

513 

All Cause Proportion 

0.1 

0.12 

0.26 

0.52 

 
Expected = Total* All Cause Proportion 

51.3 

61.56 

133.38 

266.76 

 
Observed  Expected  (Observed -Expected)  (Observed -Expected)^2  /Expected 

51.3 

-43.3 

1874.89 

36.54756335 

16 

61.56 

-45.56 

2075.7136 

33.71854451 

56 

133.38 

-77.38 

5987.6644 

44.89177088 

433 

266.76 

166.24 

27635.7376 

103.5977568 

Total       

218.7556355 

Critical value at 0.05 level of significance = 7.81 

The Chi-square test statistic > critical value, we therefore reject the null hypothesis and conclude that there exists sufficient statistical evidence to conclude that deaths from cardiovascular disease are not in the same proportion as all deaths for the different age. 

Question 11.2.6 

Null hypothesis, H0: Reasons for choosing the care are equally likely 

Alternative hypothesis, H1: Reasons for choosing the care are not equally likely 

Chi-square = 

Safety 

Reliability 

Cost 

Performance 

Comfort 

Looks 

84 

62 

46 

34 

47 

27 

Expected = 84 + 62 + 46 + 34 + 47 + 27 = 300/6 = 50 

Chi-square = 

Chi-square = = 42.2 

Degrees of Freedom = k-1 

= 6-1 = 5 

Critical value at 0.05 level of significance = 11.07 

The Chi-square test statistic > critical value, we therefore reject the null hypothesis and conclude that there exists sufficient statistical evidence to conclude that the reasons for choosing the care are NOT equally likely. 

Illustration
Cite this page

Select style:

Reference

StudyBounty. (2023, September 15). How to value your house - Zoopla.
https://studybounty.com/how-to-value-your-house-zoopla-coursework

illustration

Related essays

We post free essay examples for college on a regular basis. Stay in the know!

17 Sep 2023
Statistics

Scatter Diagram: How to Create a Scatter Plot in Excel

Trends in statistical data are interpreted using scatter diagrams. A scatter diagram presents each data point in two coordinates. The first point of data representation is done in correlation to the x-axis while the...

Words: 317

Pages: 2

Views: 187

17 Sep 2023
Statistics

Calculating and Reporting Healthcare Statistics

10\. The denominator is usually calculated using the formula: No. of available beds x No. of days 50 bed x 1 day =50 11\. Percentage Occupancy is calculated as: = =86.0% 12\. Percentage Occupancy is calculated...

Words: 133

Pages: 1

Views: 150

17 Sep 2023
Statistics

Survival Rate for COVID-19 Patients: A Comparative Analysis

Null: There is no difference in the survival rate of COVID-19 patients in tropical countries compared to temperate countries. Alternative: There is a difference in the survival rate of COVID-19 patients in tropical...

Words: 255

Pages: 1

Views: 251

17 Sep 2023
Statistics

5 Types of Regression Models You Should Know

Theobald et al. (2019) explore the appropriateness of various types of regression models. Despite the importance of regression in testing hypotheses, the authors were concerned that linear regression is used without...

Words: 543

Pages: 2

Views: 175

17 Sep 2023
Statistics

The Motion Picture Industry - A Comprehensive Overview

The motion picture industry is among some of the best performing industries in the country. Having over fifty major films produced each year with different performances, it is necessary to determine the success of a...

Words: 464

Pages: 2

Views: 86

17 Sep 2023
Statistics

Spearman's Rank Correlation Coefficient (Spearman's Rho)

The Spearman’s rank coefficient, sometimes called Spearman’s rho is widely used in statistics. It is a nonparametric concept used to measure statistical dependence between two variables. It employs the use of a...

Words: 590

Pages: 2

Views: 309

illustration

Running out of time?

Entrust your assignment to proficient writers and receive TOP-quality paper before the deadline is over.

Illustration