17 Nov 2022

224

Regression Analysis: Definition, Types, and Examples

Format: APA

Academic level: University

Paper type: Statistics Report

Words: 529

Pages: 2

Downloads: 0

A procedure where a sample data is collected and statistically used for inferential purposes is known as hypothesis testing. There are two types of hypothesis null and alternative. Null hypothesis is a statement that support population mean in inferential statistics. Alternative hypothesis is a statement that complement null hypothesis. Inferential statistics enables statisticians to calculate the significance level of null hypothesis based on the data provided. There are several types of statistical test approach which derive ‘test statistics’. Test statistics obtained is used to make conclusion based on defined ‘decision rule’. Regression can also be applied to evaluate the nature of relationship between variable. 

Question 1 

a) Considering the model where only the price is used to predict the sales volume, test the model to determine if the model is valid. 

It’s time to jumpstart your paper!

Delegate your assignment to our experts and they will do the rest.

Get custom essay

Develop research problem. 

Sales for normal and luxury goods increases when price decrease. The higher the price the lower the demand and vice versa. Based on demand principle the research question would be; does the price influence sales of frozen desert pies? 

Collect data. 

Sales  Price ($) 
380  7.5 
430  4.5 
470  6.4 
450 
490 
340  7.2 
300  7.9 
440  5.9 
450 
300 

State null and alternative hypothesis. 

Null hypothesis; there is a relationship between price and sales 

H O :  ≠ 0 

Alternative hypothesis; There is no relationship between price and sales 

H 1 :  1  0 

Define critical region value based on alpha used in your analysis. 

Degree of confidence – 95% 

Level of significance – 5% (α = 0.05) 

If the probability obtained is less than 0.05 null hypothesis true. 

Define decision rule. 

α ≥ p-value > α 

p-value ≤ α : if p-value is less than or equals to α 

Fail to reject null hypothesis 

α (0.05) < p-value : p-value equals greater than α 

Reject null hypothesis 

P-value obtained after analysis of data using statistical package is the actual probability of the sample data. 

Select appropriate test method to apply based on nature of data collected 

Tool to use – Independent sample t-test two tailed 

Conduct the test to obtain ‘test statistics’. 

t-Test: Independent Samples- Computed in excel 

t-Test: Independent Samples 
     
  Price ($) (A)  Sales (B) 
Mean  6.34  405.00 
Variance  1.40  4916.67 
Observations  10.00  10.00 
Hypothesized Mean Difference  0.00   
df  9.00   
t Stat  -17.98   
P(T<=t) one-tail  0.00   
t Critical one-tail  1.83   
P(T<=t) two-tail  0.00   
t Critical two-tail  2.26   

Compare test statistics to critical region to determine verdict of null 

P-value < α 

< 0.05 

Inference we fail to reject null hypothesis 

Question b. Using slope to determine significance 

Hypothesis 

Null hypothesis; there is a relationship between price and sales 

H O :  ≠ 0 

Alternative hypothesis; There is no relationship between price and sales 

H 1 :  1  0 

Decision Rule 

If calculated value is outside critical value range reject null hypothesis 

Analysis approach 

Regression – excel pack 

Results 

Regression             
Multiple R  0.70             
R Square  0.49   

df 

SS 

MS 

Sign-F 

Adjusted Error  0.42  Regression 

6.11 

6.11 

7.58 

0.02 

Standard Error  0.90  Residual 

6.45 

0.81 

   
Observations  10  Total 

12.56 

     
  Coeff  Stand-Error  t Stat  P-value  Low-95%  Upp-95%  Low-95.0%  Upp-95.0% 
Intercept  11.10  1.75  6.33  0.00  7.06  15.14  7.06  15.14 
Sales (B)  -0.01  0.0043  -2.75  0.02  -0.02  0.00  -0.02  0.00 

Inferences 

SALES= 11.10 - (0.01*PRICE) 

Test Statistics 

Sales Coeff  -0.01 
Stand-Error  0.00 
   
test statistics  -2.75 

t =  = -2.75 

Critical Value Range 

α  0.05 
α/2  0.025 
t1- α/2  0.975 
df  18 
critical value  ±2.10 

Conclusion 

-2.75 is outside ±2.10 hence, we reject null hypothesis 

P-value approach 

p-value approach   
   
computed p-value  2.3212E-08 
   
probability (-2.75)=  2.3212E-08 

Probability 2P(-2.75) = 2.3 (  ) 

Conclusion 

Price and other factors influence sales 

Question c. Coefficient of Determination 

    0.70 
Coefficient of Determination  0.49 

Question d . standard error of the estimate 

Standard error = 0.0043 

Question 2 advertisement cost vs. sales regression analysis 

Regression Statistics                 
Multiple R  0.58               
R Square  0.34               
Adjusted R Square  0.26               
Standard Error  38.16               
Observations  10               
                 
ANOVA                 
  df  SS  MS  Significance F       
Regression  6041.19  6041.19  4.15  0.08       
Residual  11648.81  1456.10           
Total  17690.00             
                 
  Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Lower 95.0%  Upper 95.0% 
Intercept  201.36  74.45  2.70  0.03  29.67  373.04  29.67  373.04 
SALES  0.37  0.18  2.04  0.08  -0.05  0.79  -0.05  0.79 

From the analysis 

SALES EQUATION = 201.36+0.37*ADVERT COST 

Comparison 

Sales predicting equation on price 

SALES= 11.10 - (0.01*price) 

From above equation and actual sales advertisement rate is a better predictor than price 

Analyzed example 

Week  Sales  Price ($)  Advertising ($100s) 
380  7.5 

Price analysis = 11.10 - (0.01*price) 

PRICE   

7.5 

constant 

11.1 

coeff    (-0.01) 
     
SALES 

11.025 

 
Advertisement Prediction     
advert cost  400 
constant    201.36 
coeff    0.37 
     
SALES  349.36   

Reference 

11.5 Regression. (nd). Retrieved from: http://uregina.ca/~gingrich/regr.pdf 

SAGE. (2017). Comparing Two Groups Mean: The Independent Sample t Test [pdf]. Retrieved from: 

http://oak.ucc.nau.edu/rh232/courses/EPS525/Handouts/Understanding%20the%20Independe nt%20t%20Test.pdf 

Illustration
Cite this page

Select style:

Reference

StudyBounty. (2023, September 15). Regression Analysis: Definition, Types, and Examples.
https://studybounty.com/regression-analysis-definition-types-and-examples-statistics-report

illustration

Related essays

We post free essay examples for college on a regular basis. Stay in the know!

17 Sep 2023
Statistics

Scatter Diagram: How to Create a Scatter Plot in Excel

Trends in statistical data are interpreted using scatter diagrams. A scatter diagram presents each data point in two coordinates. The first point of data representation is done in correlation to the x-axis while the...

Words: 317

Pages: 2

Views: 187

17 Sep 2023
Statistics

Calculating and Reporting Healthcare Statistics

10\. The denominator is usually calculated using the formula: No. of available beds x No. of days 50 bed x 1 day =50 11\. Percentage Occupancy is calculated as: = =86.0% 12\. Percentage Occupancy is calculated...

Words: 133

Pages: 1

Views: 150

17 Sep 2023
Statistics

Survival Rate for COVID-19 Patients: A Comparative Analysis

Null: There is no difference in the survival rate of COVID-19 patients in tropical countries compared to temperate countries. Alternative: There is a difference in the survival rate of COVID-19 patients in tropical...

Words: 255

Pages: 1

Views: 251

17 Sep 2023
Statistics

5 Types of Regression Models You Should Know

Theobald et al. (2019) explore the appropriateness of various types of regression models. Despite the importance of regression in testing hypotheses, the authors were concerned that linear regression is used without...

Words: 543

Pages: 2

Views: 175

17 Sep 2023
Statistics

The Motion Picture Industry - A Comprehensive Overview

The motion picture industry is among some of the best performing industries in the country. Having over fifty major films produced each year with different performances, it is necessary to determine the success of a...

Words: 464

Pages: 2

Views: 86

17 Sep 2023
Statistics

Spearman's Rank Correlation Coefficient (Spearman's Rho)

The Spearman’s rank coefficient, sometimes called Spearman’s rho is widely used in statistics. It is a nonparametric concept used to measure statistical dependence between two variables. It employs the use of a...

Words: 590

Pages: 2

Views: 309

illustration

Running out of time?

Entrust your assignment to proficient writers and receive TOP-quality paper before the deadline is over.

Illustration