22 Nov 2022

222

Predictor Variables: Definition, Types & Examples

Format: APA

Academic level: Master’s

Paper type: Coursework

Words: 558

Pages: 2

Downloads: 0

Task #1. Examine the relationship between predictor variables (e.g., Age, Eagles, Birdies, Pars, or Bogies) and Earnings per Round. 

A simple linear regression was performed for the predictor variables of age, eagles, birdies, pars, and bogies versus earnings per round. The results of the analysis were shown in tables 1, 2, 3, 4, and 5.

It’s time to jumpstart your paper!

Delegate your assignment to our experts and they will do the rest.

Get custom essay

Table 1. Simple Linear Regression of Age and Earnings Per Round 

Model Summary - Earnings per Round 
Model  R²  Adjusted R²  RMSE 
H₀   0.000   0.000   0.000   20708.229  
H₁   0.195   0.038   0.033   20360.398  
 
ANOVA 
Model    Sum of Squares  df  Mean Square 
H₁   Regression   3.257e  +9   1   3.257e +9   7.857   0.006  
    Residual   8.208e +10   198   4.145e +8          
    Total   8.534e +10   199              
 
Note.  The intercept model is omitted, as no meaningful information can be shown.
Coefficients 
Model    Unstandardized  Standard Error  Standardized 
H₀   (Intercept)   23228.695   1464.293       15.863   < .001  
H₁   (Intercept)   43456.771   7358.522       5.906   < .001  
    Age   -605.722   216.090   -0.195   -2.803   0.006  
 

Residuals vs. Predicted 

Q-Q Plot Standardized Residuals 

Table 2. Simple Linear Regression of Eagles and Earnings Per Round 

Model Summary - Earnings per Round 
Model  R²  Adjusted R²  RMSE 
H₀   0.000   0.000   0.000   20733.457  
H₁   0.268   0.072   0.067   20024.946  
 
ANOVA 
Model    Sum of Squares  df  Mean Square 
H₁   Regression   6.090e  +9   1   6.090e +9   15.187   < .001  
    Residual   7.860e +10   196   4.010e +8          
    Total   8.469e +10   197              
 
Note.  The intercept model is omitted, as no meaningful information can be shown.
Coefficients 
Model    Unstandardized  Standard Error  Standardized 
H₀   (Intercept)   23063.111   1473.463       15.652   < .001  
H₁   (Intercept)   12903.439   2970.156       4.344   < .001  
    Eagles   1693.279   434.504   0.268   3.897   < .001  
 

Residuals vs. Predicted 

Q-Q Plot Standardized Residuals 

Table 3. Simple Linear Regression of Birdies and Earnings Per Round 

Model Summary - Earnings per Round 
Model  R²  Adjusted R²  RMSE 
H₀   0.000   0.000   0.000   20733.457  
H₁   0.140   0.020   0.015   20580.930  
 
ANOVA 
Model    Sum of Squares  df  Mean Square 
H₁   Regression   1.665e  +9   1   1.665e +9   3.931   0.049  
    Residual   8.302e +10   196   4.236e +8          
    Total   8.469e +10   197              
 
Note.  The intercept model is omitted, as no meaningful information can be shown.
Coefficients 
Model    Unstandardized  Standard Error  Standardized 
H₀   (Intercept)   23063.111   1473.463       15.652   < .001  
H₁   (Intercept)   14042.632   4779.089       2.938   0.004  
    Birdies   35.360   17.835   0.140   1.983   0.049  
 

Residuals vs. Predicted 

Q-Q Plot Standardized Residuals 

Table 4. Simple Linear Regression of Pars and Earnings Per Round 

Model Summary - Earnings per Round 
Model  R²  Adjusted R²  RMSE 
H₀   0.000   0.000   0.000   20733.457  
H₁   0.028   0.001   -0.004   20778.405  
 
ANOVA 
Model    Sum of Squares  df  Mean Square 
H₁   Regression   6.416e  +7   1   6.416e +7   0.149   0.700  
    Residual   8.462e +10   196   4.317e +8          
    Total   8.469e +10   197              
 
Note.  The intercept model is omitted, as no meaningful information can be shown.
Coefficients 
Model    Unstandardized  Standard Error  Standardized 
H₀   (Intercept)   23063.111   1473.463       15.652   < .001  
H₁   (Intercept)   24954.509   5123.759       4.870   < .001  
    Pars   -2.338   6.064   -0.028   -0.385   0.700  
 

Residuals vs. Predicted 

Q-Q Plot Standardized Residuals 

Table 5. Simple Linear Regression of Bogies and Earnings Per Round 

Model Summary - Earnings per Round 
Model  R²  Adjusted R²  RMSE 
H₀   0.000   0.000   0.000   20733.457  
H₁   0.118   0.014   0.009   20641.610  
 
ANOVA 
Model    Sum of Squares  df  Mean Square 
H₁   Regression   1.175e  +9   1   1.175e +9   2.757   0.098  
    Residual   8.351e +10   196   4.261e +8          
    Total   8.469e +10   197              
 
Note.  The intercept model is omitted, as no meaningful information can be shown.
Coefficients 
Model    Unstandardized  Standard Error  Standardized 
H₀   (Intercept)   23063.111   1473.463       15.652   < .001  
H₁   (Intercept)   31498.703   5287.894       5.957   < .001  
    Bogies   -44.786   26.972   -0.118   -1.660   0.098  
 

Residuals vs. Predicted 

Q-Q Plot Standardized Residuals 

Summary and Analysis of Results 

The linear regression for age variable showed that age significantly predicted earnings per round with F (1, 198) =7.857, p <0.001. Pearson’s coefficient of -0.195 showed a negative relationship but the nature of the prediction was weak. The relationship had the following equation

Earnings per round = 43456.771 + (-605.722 * Age)

The linear regression for eagles’ variable showed that eagles significantly predicted earnings per round with F (1, 196) =15.187, p <0.001. Pearson’s coefficient of 0.268 showed a positive relationship but the nature of the prediction was weak. The relationship had the following equation

Earnings per round = 12903.439 + (1693.279* Eagles)

The linear regression for birdies variable showed that birdies significantly predicted earnings per round with F (1, 196) = 3.931, p <0.001. Pearson’s coefficient of 0.140 showed a positive relationship but the nature of the prediction was weak. The relationship had the following equation

Earnings per round = 14042.632 + (35.360* Birdies)

The linear regression for pars variable showed that pars weakly predicted earnings per round with F (1, 196) = 0.149, p = 0.700. Pearson’s coefficient of 0.028 was close to zero showing a very weak prediction in the negative relationship. The relationship had the following equation

Earnings per round = 24954.509 + (-2.338* Pars)

The linear regression for bogies variable showed that bogies weakly predicted earnings per round with F (1, 196) = 2.757, p = 0.098 Pearson’s coefficient of 0.118 was close to zero showing a weak prediction in the positive relationship. The relationship had the following equation

Earnings per round = 31498.703 + (-44.786* bogies)

Task #2. Examine performance measures (i.e., putting, driving yard, driving accuracy, greens in regulation, sand save percentage) and identify important predictors of Earnings per Round.  

Multiple regression analysis was performed and it yielded the following results for all the variables of putting, driving yard, driving accuracy, greens in regulation, and sand save percentage versus earnings per round.

Table 6. Multiple Regression 

Model Summary - Earnings per Round 
 

Durbin-Watson 

Model 

R² 

Adjusted R² 

RMSE 

Autocorrelation 

Statistic 

1  

0.659

 

0.434

 

0.417

 

16069.150

 

0.495

 

0.937

 

< .001

 
 
ANOVA 

Model 

 

Sum of Squares 

df 

Mean Square 

1   Regression  

3.282e +10

 

5

 

6.564e +9

 

25.419

 

< .001

 
    Residual  

4.286e +10

 

166

 

2.582e +8

         
    Total  

7.568e +10

 

171

             
 
Coefficients 
 

Collinearity Statistics 

Model 

 

Unstandardized 

Standard Error 

Standardized 

Tolerance 

VIF 

1   (Intercept)  

312336.800

 

119073.293

     

2.623

 

0.010

         
    Putting Average  

-428752.084

 

56542.827

 

-0.474

 

-7.583

 

< .001

 

0.875

 

1.143

 
    Yards/Drive  

920.506

 

206.201

 

0.405

 

4.464

 

< .001

 

0.414

 

2.418

 
    Driving Accuracy  

706.181

 

362.162

 

0.171

 

1.950

 

0.053

 

0.442

 

2.262

 
    Greens in Regulation  

2088.410

 

671.358

 

0.237

 

3.111

 

0.002

 

0.588

 

1.699

 
    Sand Save Pct  

401.193

 

221.685

 

0.111

 

1.810

 

0.072

 

0.903

 

1.107

 
 
Collinearity Diagnostics 
 

Variance Proportions 

Model 

Dimension 

Eigenvalue 

Condition Index 

(Intercept) 

Putting Average 

Yards/Drive 

Driving Accuracy 

Greens in Regulation 

Sand Save Pct 

1  

1

 

5.980

 

1.000

 

0.000

 

0.000

 

0.000

 

0.000

 

0.000

 

0.000

 
   

2

 

0.012

 

22.067

 

0.000

 

0.000

 

0.000

 

0.034

 

0.002

 

0.760

 
   

3

 

0.006

 

31.229

 

0.001

 

0.001

 

0.015

 

0.322

 

0.004

 

0.077

 
   

4

 

7.892e -4

 

87.053

 

0.023

 

0.034

 

0.000

 

0.002

 

0.634

 

0.044

 
   

5

 

2.922e -4

 

143.061

 

0.010

 

0.121

 

0.798

 

0.565

 

0.295

 

0.001

 
   

6

 

6.515e -5

 

302.988

 

0.966

 

0.844

 

0.187

 

0.077

 

0.064

 

0.117

 
 
Casewise Diagnostics 

Case Number 

Std. Residual 

Earnings per Round 

Predicted Value 

Residual 

Cook's Distance 

1

 

3.669

 

125589.000

 

69700.608

 

55888.392

 

0.253

 

2

 

3.872

 

120936.000

 

61789.594

 

59146.406

 

0.266

 

3

 

4.589

 

124746.000

 

53005.847

 

71740.153

 

0.199

 

4

 

3.710

 

110271.000

 

51829.521

 

58441.479

 

0.093

 
 

Residuals vs. Predicted 

Q-Q Plot Standardized Residuals 

Summary and Analysis of Results 

The value of R-squared increased gradually as the performance measures were added one at a time suggesting an improvement in the nature of correlation when all performance measures were considered. The variables are good predictors of earnings per round as they had a Pearson’s Coefficient of 0.659. The relationship also had a model of F (5, 166) = 25.419, p <0.001 showing a very strong relationship. The equation was given by:

Earnings per round = 312,336.800 + (-428,752.084*Putting average) + (920.506*Driving yard) + (706.181*driving accuracy) + (2088.410*Greens in regulation) + (401.193*Sand save percentage).

Illustration
Cite this page

Select style:

Reference

StudyBounty. (2023, September 15). Predictor Variables: Definition, Types & Examples.
https://studybounty.com/predictor-variables-definition-types-and-examples-coursework

illustration

Related essays

We post free essay examples for college on a regular basis. Stay in the know!

17 Sep 2023
Statistics

Scatter Diagram: How to Create a Scatter Plot in Excel

Trends in statistical data are interpreted using scatter diagrams. A scatter diagram presents each data point in two coordinates. The first point of data representation is done in correlation to the x-axis while the...

Words: 317

Pages: 2

Views: 186

17 Sep 2023
Statistics

Calculating and Reporting Healthcare Statistics

10\. The denominator is usually calculated using the formula: No. of available beds x No. of days 50 bed x 1 day =50 11\. Percentage Occupancy is calculated as: = =86.0% 12\. Percentage Occupancy is calculated...

Words: 133

Pages: 1

Views: 150

17 Sep 2023
Statistics

Survival Rate for COVID-19 Patients: A Comparative Analysis

Null: There is no difference in the survival rate of COVID-19 patients in tropical countries compared to temperate countries. Alternative: There is a difference in the survival rate of COVID-19 patients in tropical...

Words: 255

Pages: 1

Views: 250

17 Sep 2023
Statistics

5 Types of Regression Models You Should Know

Theobald et al. (2019) explore the appropriateness of various types of regression models. Despite the importance of regression in testing hypotheses, the authors were concerned that linear regression is used without...

Words: 543

Pages: 2

Views: 174

17 Sep 2023
Statistics

The Motion Picture Industry - A Comprehensive Overview

The motion picture industry is among some of the best performing industries in the country. Having over fifty major films produced each year with different performances, it is necessary to determine the success of a...

Words: 464

Pages: 2

Views: 85

17 Sep 2023
Statistics

Spearman's Rank Correlation Coefficient (Spearman's Rho)

The Spearman’s rank coefficient, sometimes called Spearman’s rho is widely used in statistics. It is a nonparametric concept used to measure statistical dependence between two variables. It employs the use of a...

Words: 590

Pages: 2

Views: 308

illustration

Running out of time?

Entrust your assignment to proficient writers and receive TOP-quality paper before the deadline is over.

Illustration