Random number table
ODD |
|||
39. Goldie Lox | F |
105 |
663 |
35. Raye Dium | F |
112 |
667 |
33. I. C. Freeze | M |
190 |
771 |
19. Clara Asabell | F |
115 |
68 |
31. Rick O’Chet | M |
140 |
664 |
25. June Blossoms | F |
100 |
660 |
13. Carol Ofthebells | F |
95 |
555 |
37. Summer Rayne | F |
96 |
665 |
21. April Showers | F |
110 |
663 |
11. Betty Won’t | F |
100 |
663 |
1. Anna BoFanna | F |
110 |
660 |
7. Rhoda Dendron | F |
120 |
665 |
22. Ben Dover | M |
190 |
69 |
27. Sam Iam | M |
195 |
669 |
9. Howie Dooit | M |
160 |
770 |
5. Seymour Clearly | M |
190 |
771 |
17. Stu potts | M |
190 |
69 |
15. Andy Walkswithme | M |
250 |
775 |
23. Hugh Gottabekiddinme | M |
200 |
772 |
3. Chuck Wagon | M |
200 |
772 |
(McGuire, Kristman, Martin and Bédard, 2017).
EVEN |
|||
22. Ben Dover | M |
190 |
69 |
32. Bill Board | M |
180 |
760 |
28. Mike Robiology | M |
215 |
772 |
10. Willy Makeit | M |
180 |
770 |
14. Harold Bethyname | M |
240 |
776 |
4. Ken Garoo | M |
180 |
770 |
16. Rod Andreel | M |
220 |
772 |
24. May Flowers | F |
130 |
770 |
20. Allyson Wonderland | F | 118 | 668 |
2. Sandy Beach | F |
140 |
770 |
26. Helen Highwater | F |
135 |
668 |
12. Al Gebra | M |
190 |
772 |
8. Pete Moss | M |
150 |
668 |
18. Sharon Sometimetogether | F | 108 | 665 |
40. Cindy Rella | F |
124 |
668 |
36. Helena Baskit | F |
114 |
666 |
34. Barry Um | M |
200 |
772 |
38. Deniece Denephew | F |
122 |
679 |
6. Phil O’Dendron | M |
210 |
774 |
30. Polly Warner-Cracker | F | 109 | 554 |
29. Maye Beeso | F |
134 |
667 |
Delegate your assignment to our experts and they will do the rest.
Range matching
Range F (Weight)>=95 |
|||
13. Carol Ofthebells | F |
95 |
555 |
37. Summer Rayne | F |
96 |
665 |
11. Betty Won’t | F |
100 |
663 |
25. June Blossoms | F |
100 |
660 |
39. Goldie Lox | F |
105 |
663 |
18. Sharon Sometimetogether | F |
108 |
665 |
30. Polly Warner-Cracker | F |
109 |
554 |
1. Anna BoFanna | F |
110 |
660 |
21. April Showers | F |
110 |
663 |
35. Raye Dium | F |
112 |
667 |
36. Helena Baskit | F |
114 |
666 |
Range F>=115 |
Range F (Weight)>=155 |
||
19. Clara Asabell | F |
115 |
68 |
20. Allyson Wonderland | F |
118 |
668 |
7. Rhoda Dendron | F |
120 |
665 |
38. Deniece Denephew | F |
122 |
669 |
40. Cindy Rella | F |
124 |
668 |
24. May Flowers | F |
130 |
770 |
29. Maye Beeso | F |
134 |
667 |
29. Maye Beeso | F |
134 |
667 |
26. Helen Highwater | F |
135 |
668 |
2. Sandy Beach | F |
140 |
770 |
Range>=140 |
|||
33. I. C. Freeze | M |
140 |
771 |
31. Rick O’Chet | M |
150 |
664 |
27. Sam Iam | M |
160 |
669 |
9. Howie Dooit | M |
180 |
770 |
5. Seymour Clearly | M |
180 |
771 |
17. Stu potts | M |
180 |
69 |
15. Andy Walkswithme | M |
190 |
775 |
23. Hugh Gottabekiddinme | M |
190 |
772 |
3. Chuck Wagon | M |
190 |
772 |
22. Ben Dover | M |
190 |
669 |
Range>=190 |
|||
32. Bill Board | M |
190 |
770 |
28. Mike Robiology | M |
195 |
772 |
10. Willy Makeit | M | 200 | 770 |
14. Harold Bethyname | M |
200 |
776 |
4. Ken Garoo | M |
200 |
770 |
16. Rod Andreel | M |
210 |
772 |
12. Al Gebra | M |
215 |
772 |
8. Pete Moss | M |
220 |
668 |
34. Barry Um | M |
240 |
772 |
6. Phil O’Dendron | M |
250 |
774 |
(Bland, 2015).
Rank-ordered matching
Ranked Ordered matching | Experimental (gender and Height) | Control (Gender and Height) | ||
F95 | F96 | |||
F100 | F100 | |||
F105 | F108 | |||
F109 | F110 | |||
F110 | F112 | |||
F114 | F115 | |||
F118 | F120 | |||
F122 | F124 | |||
F130 | F134 | |||
F135 | F140 | |||
M140 | M150 | |||
M160 | M180 | |||
M180 | M180 | |||
M190 | M190 | |||
M190 | M190 | |||
M190 | M195 | |||
M200 | M200 | |||
M200 | M210 | |||
M215 | M220 | |||
M240 | M250 |
Advantages of range matching
Range matching is an important technique that helps in optimizing the variables that would have been present in a case study. Range matching may help control the confounding functions of other critical factors in a case study. For example, range matching, when applied to gender, may help with the control of other important socio-economic factors that are relevant in the society in which the individuals are matched in.
Additionally, range matching is important because it permits the use of smaller units or sample sizes by preparing a “priori” with a “posteriori”. Range matching is also useful because it limits a stratified analysis in a case study with too many strata ( Kleinbaum and Klein,).
Disadvantages of range matching
An individual is only limited to the factors that would already have been known by the researchers as being risk factors to the outcome of the study
There is bias in range matching because the matching criteria entails matching in relation to exposure and not the outcome of the study.
It is very challenging to the researcher in case the study requires matching of several variables such as age, weight, height and the color of individuals under the study. It normally becomes tedious and confusing because the researcher is required to restrict one of the variables such that it does not become a confounding factor in the long run.
Advantages of a random number assignment
It is effective and applicable to all cases
The researcher is not required to clearly list all service units ( Gentle, 2013).
Disadvantages a random number assignment
Requires numbering of the service units without leaving any gaps
Serial numbers assigned to the service units may not be of any significance to the researcher
Its use makes it difficult for the researcher to make use of serial numbers when large numbers are involved in the case study.
References
Bland, M. (2015). An introduction to medical statistics . Oxford University Press (UK).
Gentle, J. E. (2013). Random number generation and Monte Carlo methods . Springer Science & Business Media.
Kleinbaum, D. G., & Klein, M. (2010). Analysis of matched data using logistic regression. In Logistic regression (pp. 389-428). Springer New York.
McGuire, C., Kristman, V. L., Martin, L., & Bédard, M. (2017). The association between depression and traumatic brain injury in older adults: a nested matched case control study. Journal of Aging and Health , 0898264317708072.